

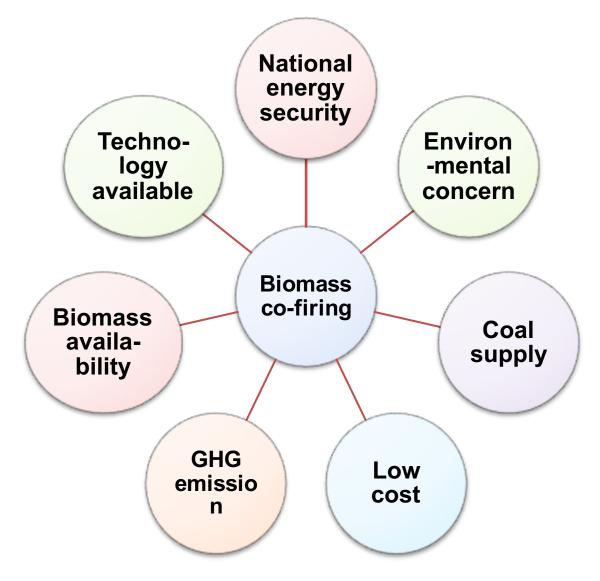
Feasibility and sustainability of co-firing biomass in coal power plants in Vietnam

A.H. Truong, M. Ha-Duong, H.A Nguyen-Trinh

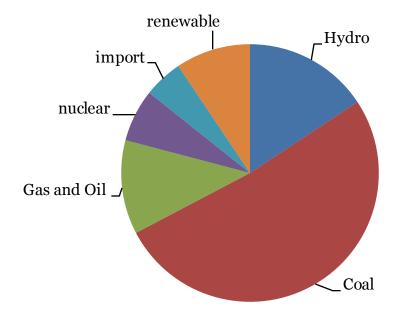
truonganha87@gmail.com; minh.haduong@gmail.com; hoanganhelec@gmail.com

Centre International de Recherche sur l'Environnement et le Développement (CIRED), France Clean Energy an Sustainable Development Laboratory (CleanED), Vietnam

> Workshop on Clean energy in Vietnam after COP21 17 December 2015, Hanoi


Content

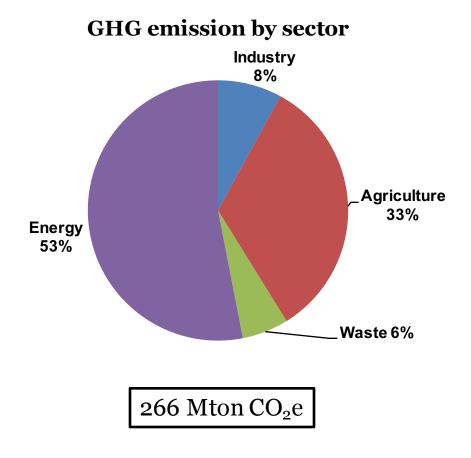
- 1. Introduction
- 2. Overview on biomass co-firing technology
- 3. Why consider biomass co-firing with coal in Vietnam
- 4. Indicators for feasibility and sustainability evaluation
- 5. Case studies for 5% co-firing rate with rice straw
- 6. Conclusion


Introduction

- Co-firing is new concept in Vietnam
- Aims of the study
 - Reviewing biomass potential in Vietnam for cofiring
 - Building a set of indicators
 - Applying indicators in two real cases
 - Mong Duong CPP: new plant, modern technology
 - Ninh Binh CPP: old plant, old technology
- Key results:
 - Not yet economical feasible
 - Offer environmental and social benefits

Why considering biomass co-firing in Vietnam?

Co-firing help cut dependency on coal for energy

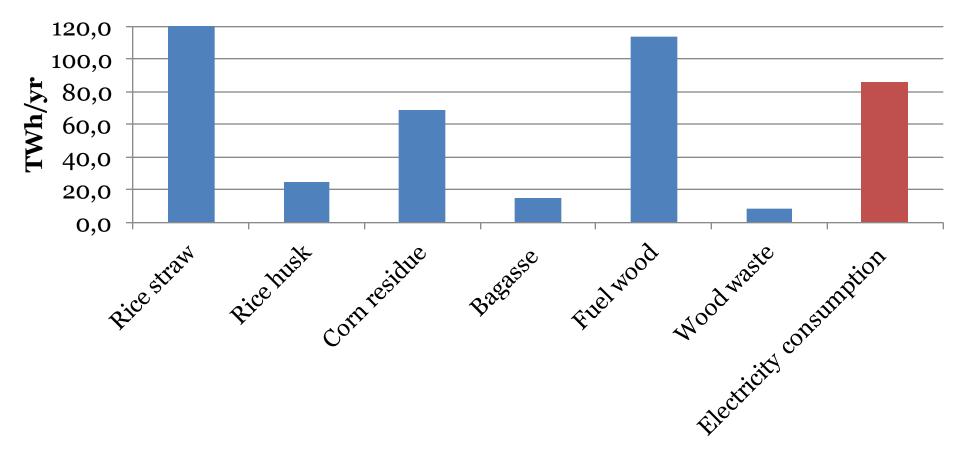


Electricity supply by sources by 2030

- Vietnam will depend more on coal for electricity
- By 2030: **80 Mton** coal imported per year

Source: "National Power Development Plan 7." 2011.

Co-firing can fit international/national policies on GHG emission reduction

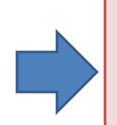


- National target: reduce 20-30% GHG emission by 2030
- Clean Development Mechanism
- Joint Crediting Mechanism

Source: MONRE. 2014. "Greenhouse Gas Inventory of Vietnam 2010."

Co-firing can utilize biomass potential in Vietnam

Biomass potential in 2010


Source: Tran, Q.C. 2011. "Review of Biomass Energy Sector in Vietnam."

Co-firing might help overcome barriers of bioenergy development

- Electricity generated from biomass is much lower than its potential
 - CHP system in sugar mills: 150MW installed capacity
 - No biomass power plant in operation

Barriers :

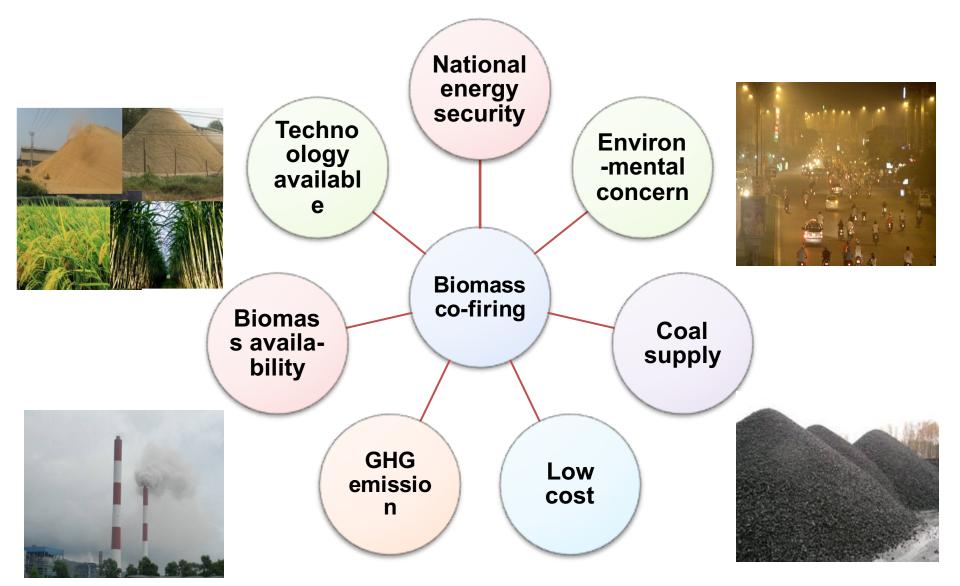
- Fossil fuel subsidized
- Low electricity tariff
- High investment cost
- Continuous biomass supply required

Opportunities for co-firing:

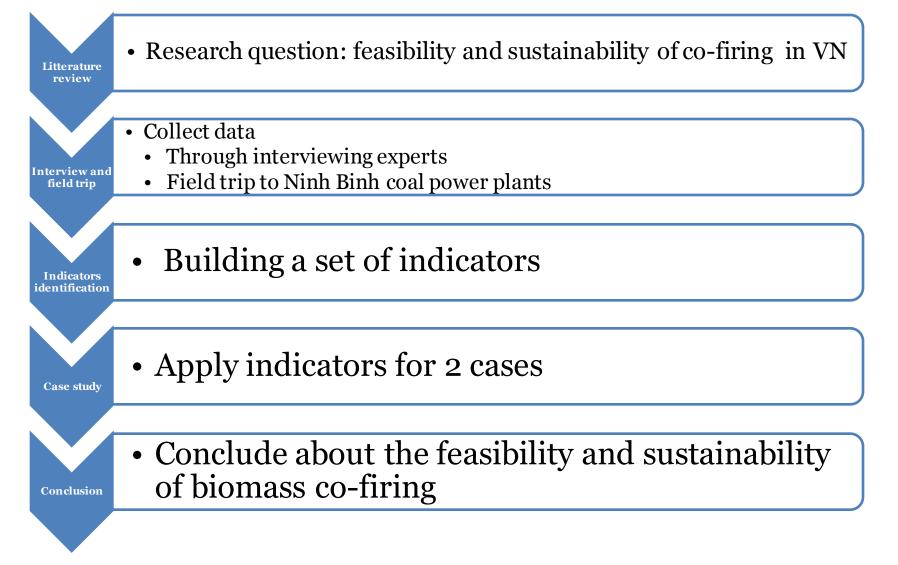
- Lower investment cost
- No need continuous biomass supply

Co-firing could improve local air quality

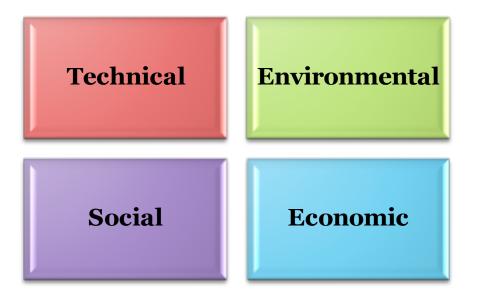
- 60-90% rice straw is burned in-field
- Emission: 1.2 3 mil. Ton/year (Nguyen 2012)
- Co-firing
 - \rightarrow less in-field burning
 - \rightarrow pollutant emission more concentrated but filtered


Experiences on co-firing exist worldwide

- About 230 plants
- Mostly in Europe (11 countries) and the US



Drax Coal Power Plant, UK (Source: Alstom)


Reasons for considering co-firing in Vietnam

Research steps

Indicators for feasibility and sustainability assessment

- Criteria
 - Relevance
 - Practical
 - Scientific based
 - Covers 4 aspects
 - Serve various users

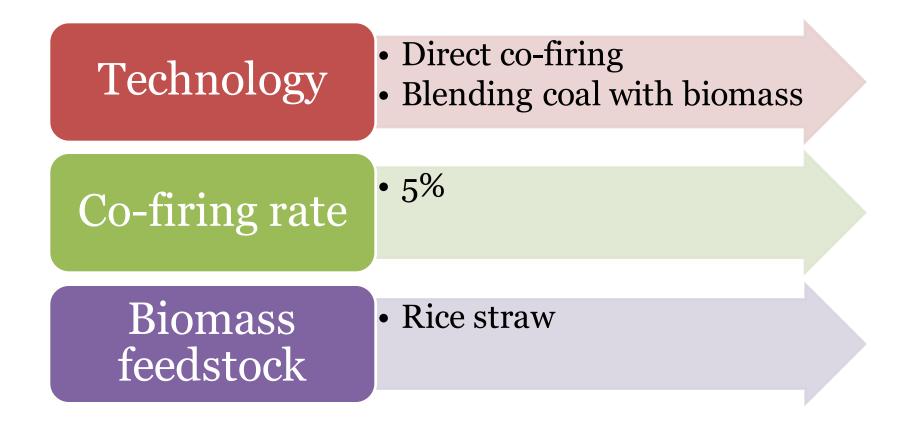
Selected indicators

	Indicator	Unit
Technical aspect	Biomass needed	ton/year
	Biomass available density	ton/km ² ·yr
	Collection radius	km
Economical aspect	Biomass unit cost	USD/ton
	Biomass cost per GJ	USD/GJ
	Effect to national trade balance (Extra revenue for coal export)	USD/year
	Levelized cost of electricity	USD/kWh
	Net Present Value	USD
	Fuel cost saved	USD/year
Environmental aspect	GHG emission reduction	ton CO ₂ e/yr
	Local air quality (NO _x , SO ₂ , PM _{2.5} , PM ₁₀)	mg/MJ
	Resource conservation	ton of coal/year
Social aspect	Extra income for farmer	USD/ha
	Number of jobs created per year	FTE jobs/ year

Case study: new FB plant and old PC plant

Mong Duong 1 Coal Power Plant

- 1080 MW
- 6.5 TWh/year
- Fluidized Bed
- Located next to coal mine


(Source: lisemco2.com)

Ninh Binh Coal Power Plant

- 100 MW
- 0.75 TWh/year
- Pulverized Coal
- Located 200 km from coal mines

Case study: biomass option selected for the cases

Results: Local rice straw supply is adequate for biomass co-firing

Indicator	Value	Unit	
	Mong Duong 1 CPP	Ninh Binh CPP	
Biomass needed	259	53	Thousand ton/year
Biomass available density	53	69	ton/km²⋅year
Collection radius	71	16	km

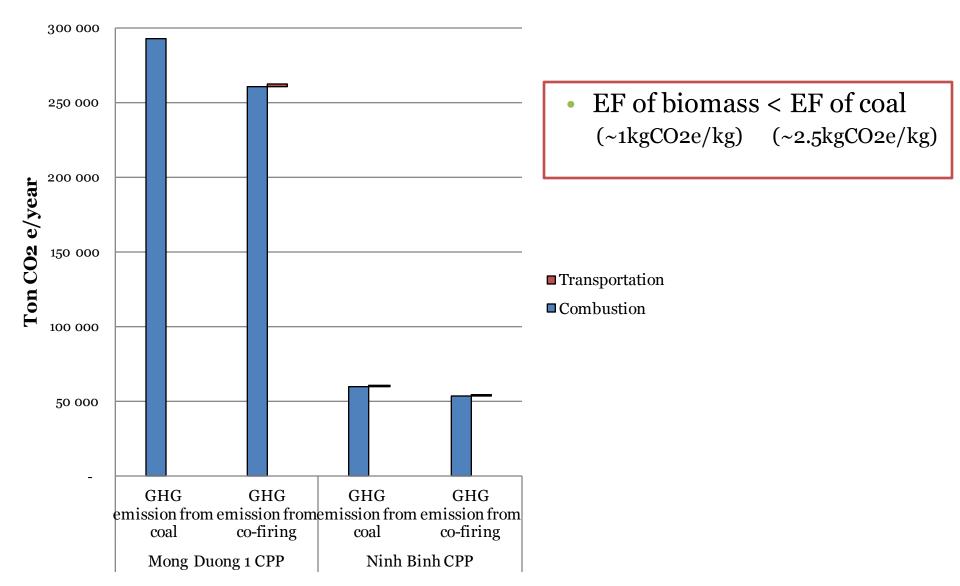
Results: co-firing is not economically feasible

Indicator	Va	alue	Unit	
	Mong Duong 1 CPP	Ninh Binh CPP	-	Coal price: Case 1: 53 USD/
Biomass unit cost	41.31	38.15	USD/ton	Case 2: 84 USD/
Levelized cost of electricity	4.5	6.6	UScent	Electricity selling 5.4 Uscent/kWh
Net Present Value	17.6	- 3.7	Million USD	
Fuel cost saved	-2,485	32	Thousand USD/year	
Extra revenue for coal export	1.4	0.35	Million USD/year	

Case 1: Low coal price \rightarrow negative fuel cost saving

■ Fix cost ■ Transportation cost

Fuel cost (per GJ) breakdown for two cases


Case 2: High LCOE \rightarrow negative NPV

- LCOE = 6.6 Uscent/kWh > tariff = 5.4 Uscent/kWh
- Co-firing is not yet subjected to supporting mechanisms
- Higher electricity tariff/FIT could make NPV positive

Results: Co-firing offers environmental & social benefits

Indicator	V	Unit	
	Mong Duong 1	Ninh Binh CPP	
	СРР		
GHG emission reduction	30,460	6,945	ton $CO_2e/year$
% emission reduced	10.4	11.5	%
Resource conservation	156	25	Thousand ton
			of coal/year
Extra income for farmer	143 - 194	172	USD/ha
Number of direct job	253	46	FTE jobs/ year
created per year			

GHG emission reduction from co-firing in two cases

Most direct jobs created from biomass collection

Conclusion

• Co-firing in Vietnam is not yet economic feasible due to

- Coal subsidies
- Low electricity tariff
- Co-firing in Vietnam offers various environmental and social benefits
 - GHG emission reduction
 - Local air quality improvement
 - Create market for biomass residue
 - Extra income for local farmers
 - Jobs creation
 - National trade balance
- Supporting mechanisms could be driving forces for co-firing development in Vietnam
 - Incentive taxes
 - Biomass subsidies
 - Carbon credit

Thank you for your attention!

