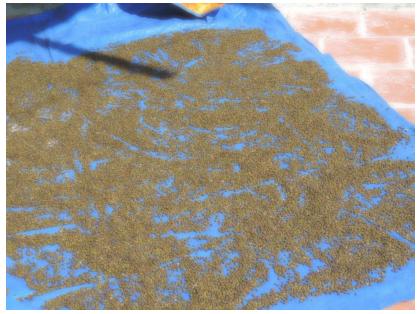
Drying in developing countries : technical, energy, environmental, economic and social aspects.

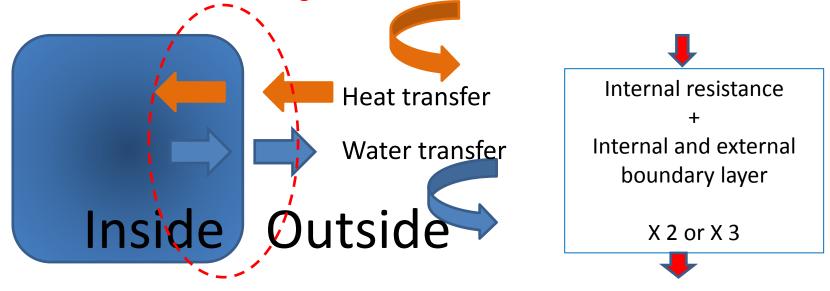
Application of West Africa case

Hélène Desmorieux University of Claude Bernard Lyon 1

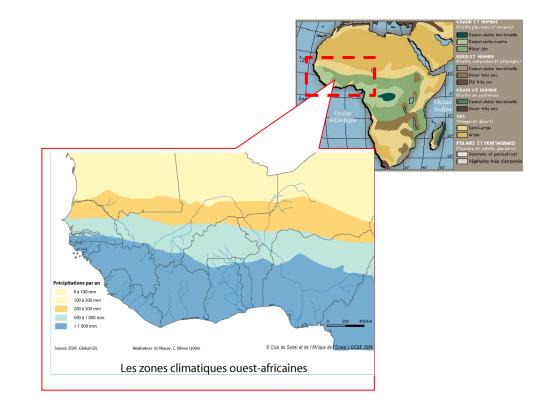


- Drying
- Subsaharian context
- Litterature
- Survey and results Criteria to take into account
- Local knowledge and know how

Most of food products need a step of drying



Why drying is linked to energy?


- Drying consists in removing water (solvant) from a product (liquid or solid)
- Heat latent of water → 2300 kJ/kg

- Spray drying → 5000 kJ/kg
- Tunnel dryer → 4000 kJ/kg (le monde alimentaire, 2001)
- High quantity of energy is needed to dry

The problematic of Drying and Dryer in subsaharian zone

- Subsaharian Zone
 From equator to 20°//
 - 2 seasons
 - Humid equatorial Climate
 - Tropical Climate
 - Soudano Sahelien Climat
- Drying
 - none industrial : <2T/cycle</p>

- Many projects \$
- Only a few of dryers are used
- Most of them are transformed and adapted

The problematic of Drying and Dryer in subsaharian zone

Products goals

user needs

Food families

Vegetables, rice, tomatoes, onions,... Cassava, wheat, Mil..

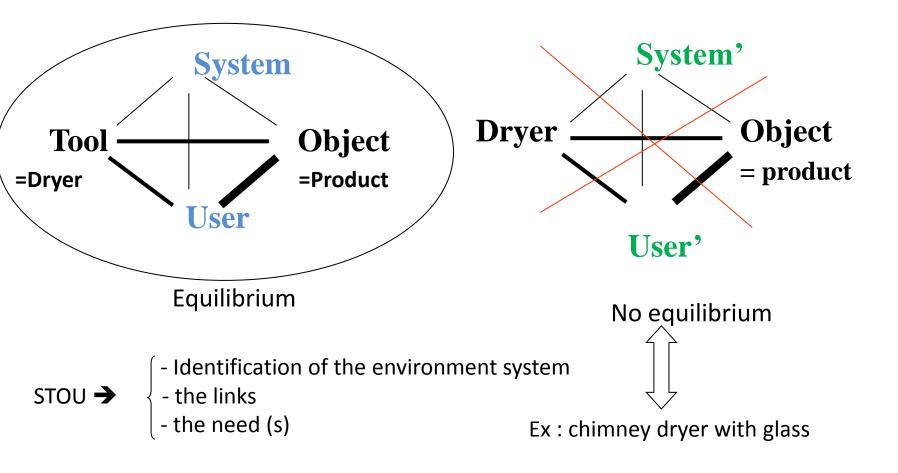
To sale excess

Tomatoes, onions, chili,

Economic activity

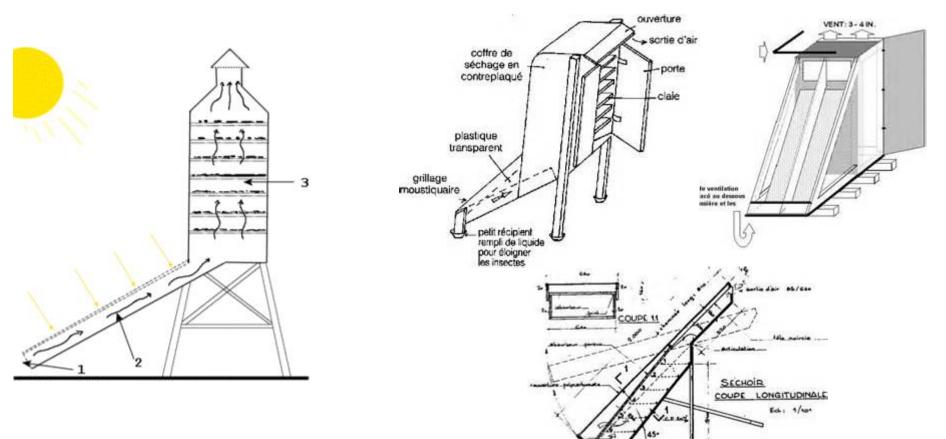
coffee, cacao, cotton, rice, coffee, fruits mangoes, bananas, pineapple

- Local market
- Exportation
- Cultures


• To provide dry product with better quality

- Better sale
- Better preservation
- > Export
- Higher drying efficiency, shorter drying time when air is too humid
- Dry in large quantity to sale more increase economic activity
- need solutions without a high investment

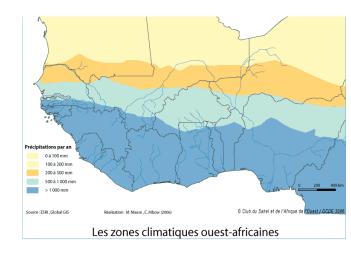
- Many studies to improve drying (quality, energy accessibility, technology)
- **Researchers** : 1990-2010 : Most transfer of technology of dryer consider the criteria of good energy efficiency
- Users : preserve their food, economic benefits
- On the local universities : new dryers, build on university or imported
- On the field : new dryers not used


STOU analysis of the problematic of transfer of technology (Galaretta, CNES)

Necessity to consider the system

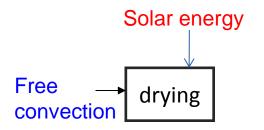
Typical studied dryer : chimney dryer

- Good energy efficiency for low capacity
- Broken glass
- Clay has to be removed



Caracterizing and classification criteria for dryers

- From litterature review → 5 families of criteria
- manufacturing criteria: materials, dimensions, load, used power...
- **performance criteria** in terms of material and energy balance, performance of solar collectors, of combustion..., environmental impact.
- product criteria : initial and final water content, sensory and nutritional qualities, capacity for rehydration, homogeneity...
- economic criteria: cost of the investment, operating costs, added value to the dry product
- **ergonomic and functional criteria**: level of technicality and availability of operators, ergonomics of the tasks (normal use, cleaning, maintenance), adaptation to the local climate.

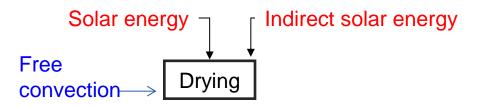


- Togo + Benin + Burkina Faso
- 140 dryer users
- Face to face and phone interviews

- Aims :
 - Caracterisation of the dryers and the drying
 - Why do they use this type of dryer
 - Satisfied?
 - Needs?
 - Are there criteria to be added to design sustainable dryers?

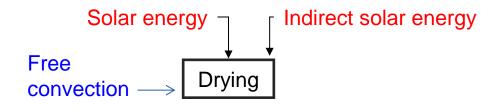
Used dryers

Sun drying : 85% of used dryers!

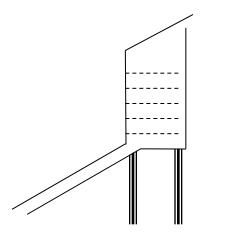


Direct and indirect solar dryers

> 500 ex Subsidized



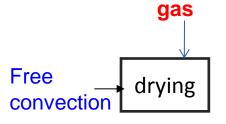
Low investment cost Protection against direct solar radiation


• •

Very low drying

Direct or indirect solar dryers: Chimney dryers

Many studies


- Optimisation of energy efficiency
- Local material: wood, stone, local isolated mat.

- Too complex technology for ..
- Limited capacity of dry product
- Too slow drying

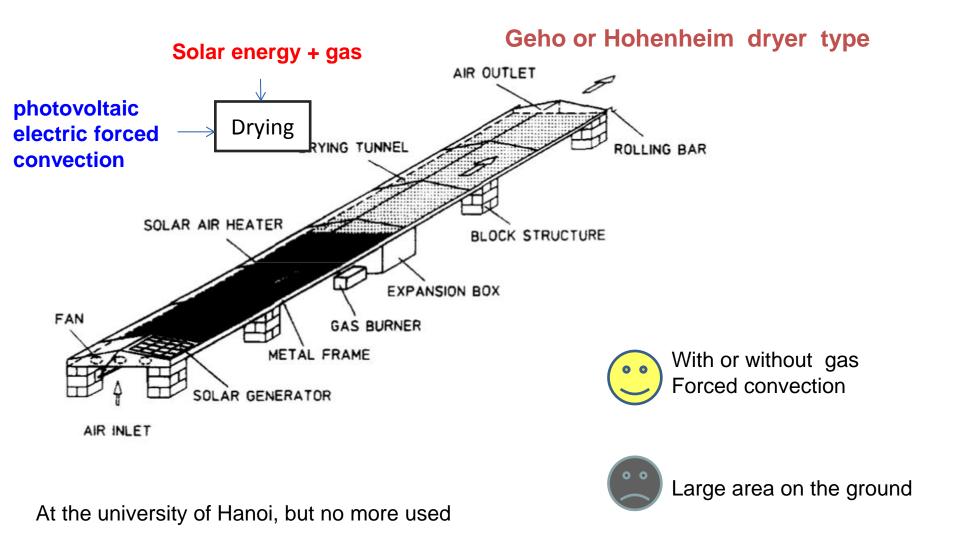
But not used on the field

Costly energy : Gas dryers

Atesta dryer

Several layer 24 to 30 hours

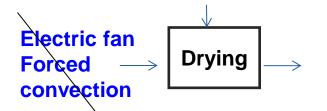
High temperture Local material



Irregular temperature control Gas failure

> CIRAD-Montpellier CEAS – Burkina

No renewable energy, largely used on the field


Hybrid dryers : gas + solar

Hohenheim University, germany Esper, A., Mühlbauer, W., 1996

Gas, solar, biomass energy

- No electric fan, no turbo ventilator :
- not limited by the cost of energy

But :

- high investment
 - +

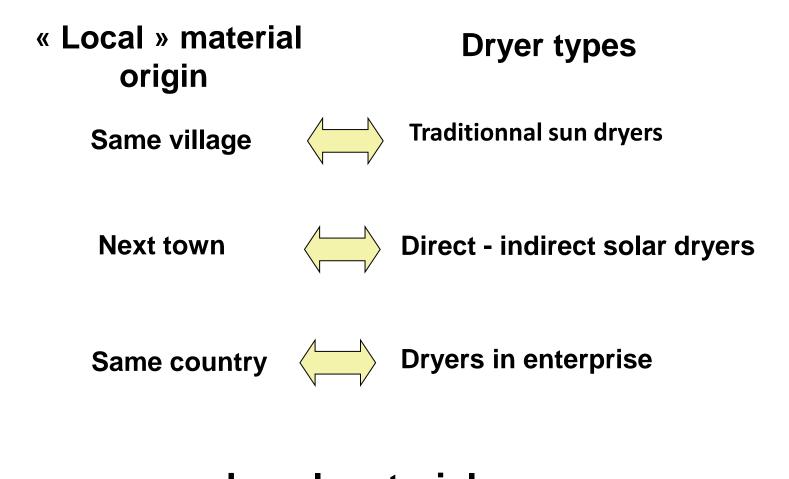
higher failure risk due to irregularity electricity supply – energy supplies not

reliable

electricity fail of 1 hour to 10 hours

need for maintenance.

•


→ most used dryers, on the ground, run with free convection

Turbo ventilation used in Asia but not used in Africa = energy from wind,

Criteria have to be taken into account

Information type	New criteria	Calculated criteria		
Dryer specifications	number or trays mean materials used average used days per year	drying surface wet product mass per tray		
Product specifications	other products dried in the same dryer mean sugars content / End use of product	dried product mass per cycle		
Energy and mass balance		effective used energy per day Evaluated drying efficiency evaporated water mass per day		
Environmental specifications	dryer advantages drawbacks as perceived by the users land space availability users type = families / groups / enterprises users organisation level geographical zone Regularity of all used energies supply energy cost and availability Distance from the material availability to the dryer	75%		
. .	investment capacity (costs the users can pay for the dryer)	drying cost		
Economic characteristics	outlet market of the dried product Social network, possibility of subsidy	maintenance cost part of drying cost in turn-over		

Criterium : accessibility of materials

Local material = f (distance to available material, dryer capacity)

Thermal and economic analysis typical dryers

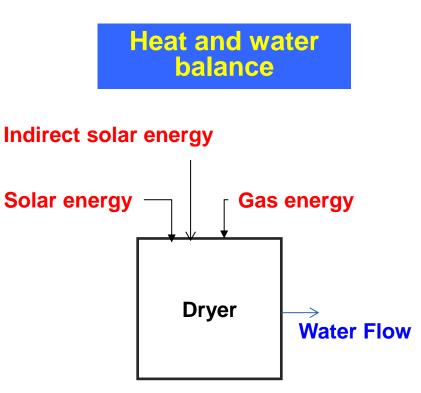
Received solar energy per day $(E_s in kJ/j)$ by the dryer

$$E_{s} = I(S_{dir} + S_{ind})$$

Supply energy by butane gas

$$E_g = \frac{m_{g,cy}}{\Delta t_{cy}} \times PCI$$

Avalaible energy


$$E = E_s + E_g$$

Energy for water evaporation

$$E_V = \frac{m_i}{\Delta t_{cy}} \left(\frac{X_f - X_i}{1 + X_i} \right) \times L_V$$

Energetic efficiency of the dryer :

$$\varepsilon = E_V/E$$

Thermal and economic analysis typical dryers

Investment cost

+ Capacity of dry product

+ Take into account the duration of use in the year + the average evaporated water flow

+ Maintenance cost

Cost and economic efficiency of the drying

Drying cost per kg of evaporated water per day

Gain/day (f CFA/d)

Thermal and economic analysis

Typical dryers						
Dryer	1					
Products	Mais - corn	manioc	tomatoes	tomatoes	pineapple	rice
ε = (evaporated water) / (evaporable water)	8%	25%	19%	15%	36%	23%
Drying cost per kg evaporated water (f CFA /kg)	7	60	65	45	50	7
Gain per day PV _j (f CFA/d)	345	35350	-90	-235	48230	419090

Criteria : User types-Products types-Cost/m 2

Dryers types	Users and characteristics	Dryed products	Dryer Cost
Solar drying on a support : mat, cover, sheet steel table, road,	Families	Local consumption No fruits	Closed to zero
Direct and indirect solar drying	Families, groups	Local sale Export for crops No fruit for export	15 < cost < 80 €/m ² of tray
Costly energy :gas or electricity Mix drying: solar + gas or electricty + biomass	Enterprises	All products, fruits	100 < cost < 200 €/m² of tray
forced convection ; Mix energy with solar		Little used	Above 100€/m ² of tray
Photovoltaic		Little used	

Knowing criteria for choice

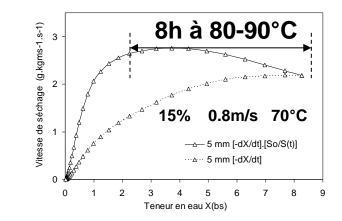
- Choice method
- value of criteria depending to the system

The knowledge transfers

The direction of knowledge transfers

North ⇔ South

- University \Leftrightarrow on the field even in developing countries
- Two examples :
 - mangoes drying at *too* high temperature
 - *Too* high thickness of Spirulina layer drying


Supply of know how, example 1 : mangoes drying

How we can learn from local users : two examples about drying

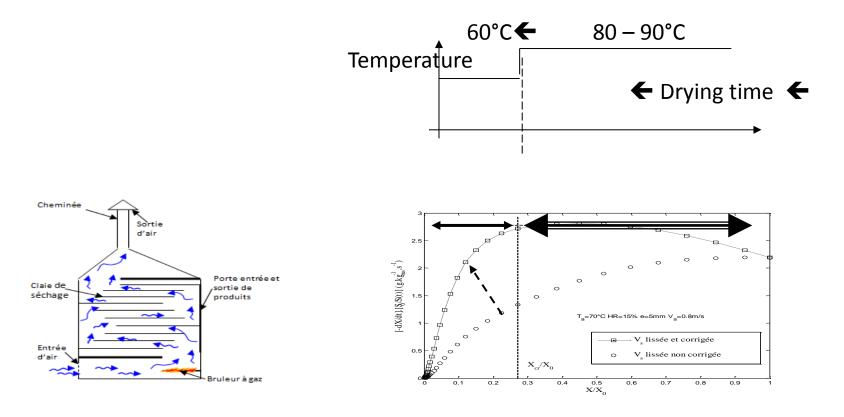
West Africa : 300 000 T/year

Several dryers

Litterature T<60°C

On the field \rightarrow T = 80-90°C during 6-8 hours

No first stage + high temp → good quality


Formation of operators Local + international network Drying rate with conditions chosen by producers

- → shrinkage
- ➔ first stage appears

→High temperature during first stage

Taking into account the « know how » to understand mass transfer in food drying

Control of food mangoes by surface temperature

Understanding the under different condition traditionnal processes

➔ involve new knowledges

V

Lower energy consumption by temperature profil control during drying

Need :

Need drying model + control model

Need to bring knowledge to the dryer users :

- =>water and heat transfers
- =>what temperature and when?
 - Mangoes
 - Tea

...

- •
- Example of maize drying in 2 places in Vietnam:

Corn maize drying in Thanh Hoa T=80 =>T>100°C

Maize drying 2 in Thanh Hoa >130°C during all drying Paid back p = 1year

Supply of know how, example 2 : Spirulina drying

• Earthrise, cyanotech,

180000m2 in the Sonoran desert, Earthrise

Chad

Spray drying in west California

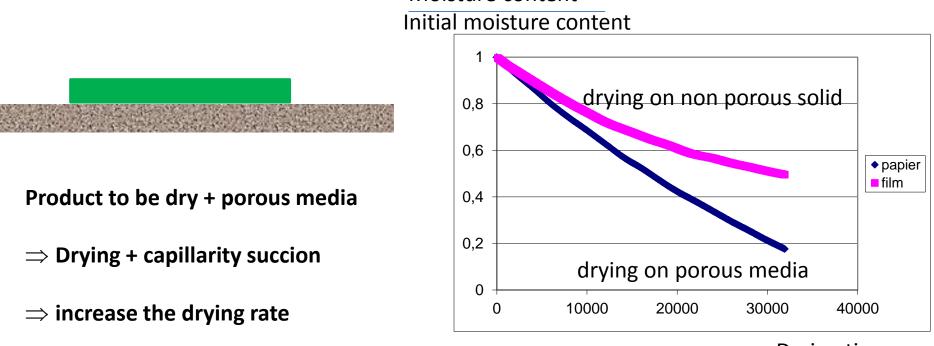
Convective hot air drying in France

Some dryed Spirulina

Spirulina Classical process

Maximal 2 mm thick

Drying over sand in Chad


Dihé, 5 mm thick → ? 40 tons/year

Using the capillarity of the sand

Intensification of drying by capillarity

Understanding the traditionnal method -> allow developping a new process

Moisture content

Drying time

Conclusion

- Design has to be distributed between specialists in engineering, economic....and users
- Need of users have to be identified with the users
- Motivations of all the actors have to be identified : even politic, social, economic....
- To better and quick adaptation: necessity to take into account the local knowledge
- Knowledge transfers has not only one direction

Thanks to

Tchamye Boroze, LES Lomé, Togo Kossi Napo, LES Lomé, Togo Jean Michel Meot, Cirad, Montpellier

Didier Lecomte, ITC, USTH

Minh Ha Duong, USTH, Hanoi Trung Vu Truong, USTH, Hanoi